Graphical Techniques and 3-Part Splittings for Linear Systems

J. De Pillis

Istituto Matematico, Florence, Italy, and Department of Mathematics, University of California, Riverside, California 92507

Communicated by Oved Shisha
Received July 29, 1974

1. BACKGROUND

With A an invertible bounded linear operator on Hilbert spaze \mathscr{H} (an invertible matrix on n-dimensional spaze \mathscr{H}_{n}) and y_{0} fixed in \mathscr{H}, we seek the solution vector $x \in \mathscr{H}$ for the linear system

$$
\begin{equation*}
A x=y_{0} \tag{1.1}
\end{equation*}
$$

If A^{-1} is not immediately accessible, we can, at least, extract an invertible term A_{1}, and from the 2-part splitting, $A=A_{1}+A_{2}{ }^{\prime}$, we define the so-called 2 -part sequence $\left\{x_{n}{ }^{\prime}\right\}$ recursively by

$$
\begin{equation*}
A_{1} x_{n+1}^{\prime}+A_{2}^{\prime} x_{n}^{\prime}=y_{0}, \quad n=0,1,2, \ldots \tag{1.2}
\end{equation*}
$$

for arbitrary but fixed initial $x_{0}{ }^{\prime} \in \mathscr{H}$. Similarly, we define the 3-part sequence $\left\{x_{n}\right\}$, resulting from the 3-part splitting $A=A_{1}+A_{2}+A_{3}$, by the equations

$$
\begin{equation*}
A_{1} x_{n+2}+A_{2} x_{n+1}+A_{3} x_{n}=y_{0}, \quad n=0,1,2, \ldots \tag{1.3}
\end{equation*}
$$

for arbitrary, but fixed initial couple $x_{0}, x_{1} \in \mathscr{H}$. (Note that the first term, A_{1}, of the splittings in (1.2) and (1.3) are the same, so that of necessity, we have $A_{2}{ }^{\prime}=A_{2}+A_{3}$.) Clearly, if the sequences $\left\{x_{n}{ }^{\prime}\right\}$ of (1.2), or $\left\{x_{n}\right\}$ of (1.3) converge at all, then the convergence must be to the solution vector x of (1.1). In a recent paper [1] it is shown that for certain complex analytic $\phi(\cdot)$ defined in $\sigma\left(A_{1}^{-1} A_{2}{ }^{\prime}\right)$, the spectrum of $A_{1}^{-1} A_{2}{ }^{\prime}=B$, we may choose A_{3} in (1.3) of the form

$$
\begin{equation*}
A_{3}=A_{1} \phi(B)(I+\phi(B))^{-1}(B-\phi(B)), \tag{1.4}
\end{equation*}
$$

where $\phi(\cdot)$ is the corresponding analytic function acting on the operator
(matrix) \mathscr{B}. Conditions are given [1, Theorem 6.3] so that for certain constraints on $\sigma\left(A_{1}^{-1} A_{2}{ }^{\prime}\right)$, the 3 -part splitting of (1.3) provides faster convergence than the 2-part splitting of (1.2). Of course we must raise the questions: (a) How much faster (and by what measure) does $\left\{x_{n}\right\}$ converge, and (b) is it worth the extra effort to compute A_{3} of (1.4), i.e., is computation of $\left(I+\phi\left(A_{1}^{-1} A_{2}^{\prime}\right)\right)^{-1}$ reasonably easy?

2. The Objectives of this Paper

In deciding whether passage from a given 2-part splitting, $A=A_{1} \div A_{2}^{\prime}$, to a 3-part splitting, is feasible, we answer the following questions:
(1) How far outside the unit circle can $\sigma\left(A^{-1} A_{2}{ }^{\prime}\right)$ lie in order that a 3-part splitting (1.3) will produce a convergent sequence $\left\{x_{n}\right\}$ for all initial x_{0} ?
(2) Is there some graphical (ruler-and-compass type) construction which, relative to the elements of $\sigma\left(A_{1}^{-1} A_{2}{ }^{\prime}\right)$, gives us a way of finding an analytic $\phi(\cdot)$ so as to construct A_{3} in our 3-part splitting (cf. (1.4))?
(3) What conditions will allow the simplest possible case (viz $\phi(\cdot)=$ constant for construction of $\phi(\cdot)$ (hence, of A_{2}) in (1.4)?
(4) How much faster will the 3-part sequence $\left\{x_{n}\right\}$ converge, relative to the 3 -part sequence $\left\{x_{n}{ }^{\prime}\right\}$?

Question (1) is answered in Theorem 3.1, although a sketch of the proof appears in [1, cf. (6.12)], in which we see that $\sigma\left(A_{1}^{-1} A_{2}{ }^{\prime}\right)$ may not lie anywhere outside the cardiod $\mathscr{C}=\{z: 2 z[\operatorname{Re}(z)+1]-1,|z|=1\}$, for any $\phi(\cdot)$ of (1.4) resulting in a convergent sequence $\left\{x_{n}\right\}$ of (1.3).

Question (2) is answered in Theorem 3.2, in which a graphical algorithm is presented for a construction of analytic $\phi(\cdot)$ for (1.4) in the following sense: From an individual element λ in $\sigma\left(A_{1}^{-1} A_{2}{ }^{\prime}\right)$, we construct the value $\phi(\lambda)$.

Question (3) (which asks when $\phi(\cdot)$ might be constant) is addressed by Theorem 3.3 for the case $\sigma\left(A_{1}^{-1} A_{2}{ }^{\prime}\right)$ is real. For example, we show that if $\sigma\left(A_{1}^{-1} A_{2}{ }^{\prime}\right) \subset\left[-s^{2}, s^{2}+2 s\right]$ for some $s, 0<s<1$, where $\rho\left(A_{1}^{-1} A_{2}{ }^{\prime}\right)=$ $s^{2}+2 s$ (this includes $A_{1}^{-1} A_{2}^{\prime}$ positive semidefinite), then the constant analytic $\phi\left(A_{1}^{-1} A_{2}{ }^{\prime}\right)=s I$ yields a 3-part sequence $\left\{x_{m}\right\}$ whose average reduction factor (definitions follow) is eventually about $1 /(s+2$) times the average reduction factor of the 2-part sequence $\left\{x_{m}{ }^{\prime}\right\}$. In other words, if $R\left(x_{m}{ }^{\prime}\right)$, the rate of convergence of $\left\{x_{m}{ }^{\prime}\right\}$, is defined as $-\ln \rho\left(A_{\mathbf{1}}{ }^{-1} A_{2}{ }^{\prime}\right)$, then $R\left(x_{m}\right)$ will be $R\left(x_{m}{ }^{\prime}\right)+\ln (2+s)$. An interesting consequence of this will be that if $A_{1}^{-1} A_{2}$ is positive semidefinite, with maximal eigenvalue λ_{0}, where $\lambda_{0}^{k-1}>\frac{1}{2}$ for $k>0$, then the prescribed 3 -part splitting will always increase the convergence rate by a factor of at least k.

3. The Main Results

Given any iteratively defined sequence $\left\{x_{0}, x_{1}, \ldots, x_{m}, \ldots\right\}$ converging to the solution vector x for the linear system $A x=y_{0}$, we measure its speed of convergence by $\sigma(m)$, its average reduction factor (after m iterations):

$$
\begin{equation*}
\sigma(m)=\left(\left\|x_{m}-x\right\| /\left\|x_{0}-x\right\|\right)^{1 / m} \tag{3.1}
\end{equation*}
$$

(cf. [2, p. 62]).
We distinguish the average reduction factor of the 2 -part (primed) sequence $\left\{x_{0}, x_{1}{ }^{\prime}, x_{2}{ }^{\prime}, \ldots, x_{m}{ }^{\prime}, \ldots\right\}$ of (1.2), and the 3-part (unprimed) sequence $\left\{x_{0}, x_{1}, x_{2}, \ldots, x_{m}, \ldots\right\}$ of (1.3) by the symbols $\sigma^{\prime}(m)$ and $\sigma(m)$, respectively. The comparison of $\sigma^{\prime}(m)$ with $\sigma(m)$ will concern us. We know that the spectral radius $\rho\left(A_{1}^{-1} A_{2}{ }^{\prime}\right)$ is an "eventual" upper bound for $\sigma^{\prime}(m)$ [2, p. 62], where $A=A_{1}+A_{2}^{\prime}$. By eventual upper bound, we mean that $\sigma^{\prime}(m)$ is actually shown to be bounded above by scalars a_{m}, say, and these scalars a_{m} eventually converge (downward) to $\rho\left(A_{1}^{-1} A_{2}\right.$) for m sufficiently large. Henceforth, we shall indicate this by the symbol $\sigma(m) \approx \rho\left(A_{1}^{-1} A_{2}{ }^{\prime}\right)$. Now in [1, Theorem 6.3], the following comparison is established: For the 2-part sequence $\left\{x_{m}{ }^{\prime}\right\}$ defined by (1.2), and the 3-part sequence $\left\{x_{m}\right\}$ defined by an analytic function $\phi(\cdot)$ on $\sigma\left(A_{1}^{-1} A_{2}{ }^{\prime}\right)$ in (1.3), where $x_{0}{ }^{\prime}=x_{0}=x_{1}$, we have (in the eventual sense mentioned above)

$$
\begin{equation*}
\sigma^{\prime}(m) \approx \rho\left(A_{1}^{-1} A_{2}^{\prime}\right) \tag{3.2}
\end{equation*}
$$

[2, p. 62], while

$$
\begin{align*}
\sigma(m) & \approx \max \left\{|\phi(z)|,|(z-\phi(z)) /(1+\phi(z))|: z \in \sigma\left(A_{1}^{-1} A_{2}^{\prime}\right)\right\} \tag{3.3}\\
& =r .
\end{align*}
$$

It is also shown that convergence of 3-part sequences is assured when r, the right-hand side of (3.3), is less than unity. This allows us to consider situations where a 2-part sequence $\left\{x_{m}{ }^{\prime}\right\}$ diverges $\left(\rho\left(A_{1}^{-1} A_{2}{ }^{\prime}\right)>1\right.$), yet an analytic $\phi(\cdot)$ on $\sigma\left(A_{1}^{-1} A_{2}{ }^{\prime}\right)$ can be found so that r, the right-hand side of (3.3) is less than one, i.e., so that the 3-part sequence $\left\{x_{m}\right\}$ converges. In any case, for such a $\phi(\cdot)$ to be found, $\sigma\left(A_{1}^{-1} A_{2}{ }^{\prime}\right)$ must lie within a certain cardioid, described in the following theorem.

Theorem 3.1. Consider any complex function $\phi: \mathbf{C} \rightarrow \mathbf{C}$ with the properties
(i) $|\phi(u)|<1$
(ii) $|(u-\phi(u)) /(1+\phi(u))|<1$, where $\quad \phi(u) \neq-1$.

Then necessarily, the domain of ϕ lies in the interior of the cardioid

$$
\mathscr{C}=\left\{2 z[\operatorname{Re}(z)+1]-1: z=e^{i \theta}\right\}
$$

Proof. Let u be an arbitrary point of the complex plane \mathbb{C}, and let a be the midpoint between u and -1 . Now let L be the line through a perpendicular to the line through -1 and u (see Fig. 1.)

Figure 1.

Now observe (cf. Fig. 1) that the open half-plane, H_{u}, defined by line L, containing u, is the set of all complex w which are at least as close to u as they are to -1 . That is,

$$
H_{u}=\{w:|(u-w) /(1+w)|<1\} .
$$

Thus, the allowable values of $\phi(u)$ subject to conditions (3.1(i)) and (3.1(ii)), must belong to both the open unit disc and to H_{u}. But this constraint (requiring that $H_{u} \cap$ unit disc $\neq \varnothing$) tells us something about u. As per Fig. 1, on any line segment L, the furthest that u may place itself from -1 is only to that point which forces the points of intersection, b and b^{\prime}, to coincide on the rim of the unit circle. This limiting position is illustrated in Fig. 2.

Observe that the distance between -1 and $b=b^{\prime}$ is $2 \cos (\alpha / 2)$, from which it follows that for angle α, the distance $|1+u|$ from -1 to u such that equality obtains for both (3.1)(i) and (3.1)(ii), is $4 \cos ^{2}(\alpha / 2)$. In polar coordinates, then, equality for (3.1)(i) and (3.1)(ii) prevails only for those $u(\alpha)$ of the form $u(\alpha)=4 \cos ^{2}(\alpha / 2)-1$, or $u(\alpha)=2(\cos \alpha+1)-1$. In complex

Figure 2.
form, then, $u(\alpha)$ is the cardioid \mathscr{C} of complex $w=2 z[\operatorname{Re}(z)+1]-1$, as z runs over all unit vectors $e^{i \alpha}$. Finally, then, any u for which both (3.1)(i) and (3.1)(ii) obtain, must lie in the interior of the cardioid \mathscr{C}. Moreover, the image point, $\phi(u)$, must lie in the intersection of the open unit disc and the open half plane H_{u} shown in Fig. 1. This ends the proof.

Notation. In what follows, the symbols $D(a, b)$ and $C(a, b)$ will denote, respectively, the closed disc and the circle in the complex plane, each with center a, and radius $b \geqslant 0$.

Consider $\lambda \in \sigma\left(A_{1}^{-1} A_{2}{ }^{\prime}\right)$. We now persent a graphical algorithm for constructing candidates for $\phi(\lambda)$, (for $\phi(\cdot)$ required in (1.4).) Moreover, the construction will indicate (for that particular λ) a value r equal to the right-hand side of (3.3), thereby giving us an upper bound on the average reduction factor $\sigma(m)$ for the 3-part sequence $\left\{x_{m}\right\}$.

Theorem 3.2. Suppose $\lambda \in \sigma\left(A_{1}^{-1} A_{2}{ }^{\prime}\right)$, where $A=A_{1}+A_{2}{ }^{\prime}$. Then if the value $\phi(\lambda)$ exists such that
(i) $|\phi(\lambda)| \leqslant r, \quad$ and
(ii) $|(\lambda-\phi(\lambda)) /(1+\phi(\lambda))| \leqslant r$,
then it is necessary and sufficient that $\phi(\lambda)$ lie in the shaded region of Fig. 3. Given $\lambda \in \sigma\left(A_{1}^{-1} A_{2}{ }^{\prime}\right)$, the key reference points λ^{\prime} and d (defining the disc $D\left(\lambda^{\prime},\left|d-\lambda^{\prime}\right|\right)$ of those complex z for which $|\lambda-z|||1+z| \leqslant r)$ are constructed by the following five-step algorithm:

Figure 3.
(1) Draw line L_{1} through the points -1 and λ.
(2) On line L_{1}, place point 0^{\prime}, one unit from -1 , and construct the circle $C\left(0^{\prime}, r\right)$.
(3) Draw tangent line L_{2} through -1 and tangent to $C\left(0^{\prime}, r\right)$ at point $a_{\text {. }}$.
(4) Locate b and b^{\prime} on line L_{1} so that they are equidistant from line L_{2} and from λ, i.e., so that $|b-c|=|b-\lambda|$ and $\left|b^{\prime}-c^{\prime}\right|=\mid b^{\prime}-\lambda!$.
(5) Construct λ^{\prime} and d to be the midpoints between b and b^{\prime}, and between c and c^{\prime}, respectively.

Proof. We now justify the algorithm. We note that $C\left(\lambda^{\prime}, \lambda^{\prime}-d\right)$ is a so-called circle of Apollonius, that is, the locus of points z whose distances from two points -1 and λ have the same ratio. In fact we see that for b and $b^{\prime} \in C\left(\lambda^{\prime} \mid \lambda^{\prime}, d\right)$.

$$
\begin{aligned}
\frac{|b-\lambda|}{|b-(-1)|} & =\frac{|b-c|}{|b-(-1)|} \quad(\operatorname{step}(4)) \\
& =r
\end{aligned}
$$

(see triangle ($-1, b, c$) of Fig. 3), and

$$
\begin{aligned}
\frac{\left|b^{\prime}-\lambda\right|}{|b-(-1)|} & =\frac{\left|b^{\prime}-c^{\prime}\right|}{|b-(-1)|} \quad(\operatorname{step}(4)) \\
& =r
\end{aligned}
$$

(see triangle ($-1, b^{\prime}, c^{\prime}$) of Fig. 3).

Thus, $D\left(\lambda^{\prime}\left|\lambda^{\prime}-d\right|\right)$, the disc defined by the circle of Appolonius described above, is the set of all z such that

$$
\frac{|z-\lambda|}{|z-(-1)|}=\frac{|\lambda-z|}{|1+z|} \leqslant r
$$

What this says is that if $\phi(\lambda)$ is to satisfy (3.4(ii)), $\phi(\lambda)$ must be one of the z 's of $D\left(\lambda^{\prime},\left|\lambda^{\prime}-d\right|\right)$. (We remark that $\left|\lambda^{\prime}-d\right|=\left|\lambda^{\prime}-b\right|=\left|\lambda^{\prime}-b^{\prime}\right|$ in Fig. 3 since the polygon $b c c^{\prime} b^{\prime}$ is a trapezoid.) On the other hand, if $\phi(\lambda)$ is to satisfy (3.4(i)), $\phi(\lambda)$ must belong to $D(0, r)$, as well. In a word, if $\phi(\lambda)$ satisfies both (3.4(i)) and (3.4(ii)), then necessarily, $\phi(\lambda) \in D(0, r) \cap$ $D\left(\lambda^{\prime},\left|\lambda^{\prime}-d\right|\right)$, which justifies the five-step construction algorithm for λ^{\prime} and d of Fig. 3.

Remark. The crucial intersection of Fig. 3, describing the range of $\phi(\cdot)$, is determined by the discs $D(0, r)$ and $D\left(\lambda^{\prime},\left|\lambda^{\prime}-d\right|\right)$, each with common radius r. We might have proceeded more generally by constructing $D\left(\lambda^{\prime},\left|\lambda^{\prime}-d\right|\right)$ with radius r, and then constructing $D(0, s)$, large or small enough to provide nonempty intersection $D(0, s) \cap D\left(\lambda^{\prime},\left|\lambda^{\prime}-d\right|\right)$. In this case, we would have, that eventually,

$$
\sigma(m) \approx \max \{r, s\}
$$

Our previous construction provides an r and a $\phi(\lambda)$ satisfying the inequalities of (3.4) for a single λ in $\sigma\left(A_{1}^{-1} A_{2}{ }^{\prime}\right)$. We can ask how the domain of $\phi(\cdot)$ can be extended beyond the singleton $\{\lambda\}$. It is easy to describe a constant set for $\phi(\cdot)$, i.e., those complex z, for which we assign $\phi(z)=\phi(\lambda)$, where, for the r constructed relative to λ, the inequalities (3.4) still obtain. In fact, inspection of (3.4)(ii) yields the following immediately:

Corollary 3.1. Given $r>0$ and $\phi(\lambda)$ satisfying (3.4), the set of complex z, with $\phi(z)=\phi(\lambda)$, satisfying the inequalities
(i) $|\phi(z)| \leqslant r, \quad$ and
(ii) $|z-\phi(z)| /|1+\phi(z)| \leqslant r$
is the disc

$$
\begin{equation*}
D(\phi(\lambda), r|1+\phi(\lambda)|)=\{z:|z-\phi(\lambda)| \leqslant r|1+\phi(\lambda)|\} \tag{3.6}
\end{equation*}
$$

The Real Case
Let us concentrate on the case when $\sigma\left(A_{1}^{-1} A_{2}{ }^{\prime}\right)$ is real, i.e., assume we have an estimate of real end points p and P such that $\sigma\left(A_{1}^{-1} A_{2}{ }^{\prime}\right) \subset[p, P]$. As we shall see, all of $\sigma\left(A_{1}^{-1} A_{2}{ }^{\prime}\right)$ can be realized as a constant set for some $\phi(\cdot)$. We can now answer the questions:
(a) What value shall we take as the upper bound r for $\sigma(m)=$ the average reduction factor for the 3-part sequence $\left\{x_{m}\right\}$ (cf. (3.3))?
(b) What value shall we then assign for the constant function $\phi(\cdot)$ in (3.6) so that all of $\sigma\left(A_{1}^{-1} A_{2}{ }^{\prime}\right)$ is in the domain of $\phi(\cdot)$?
(c) What is the consequent imporvement of the bound r for $\sigma(m)$ relative to that (vis, $\rho\left(A_{1}^{-1} A_{2}^{\prime}\right)$) for $\sigma^{\prime}(m)$ (vf. (3.2) and (3.3))? That is, what is $r / \rho\left(A_{1}^{-1} A_{2}{ }^{\prime}\right)$?

The answers are contained in the next theorem.
Theorem 3.3. Let $\sigma\left(A_{1}^{-1} A_{2}{ }^{\prime}\right)$ be a subset of the real line. Assume either
(A) For some $r_{1}, 0 \leqslant r_{1}<1$,

$$
\sigma\left(A_{1}^{-1} A_{2}{ }^{\prime}\right) \subset\left[-r_{1}^{2}, r_{1}^{2}+2 r_{1}\right]
$$

or
(B) For some $r_{2},-1<r_{2} \leqslant 0$,

$$
\sigma\left(A_{1}^{-1} A_{2}^{\prime}\right) \subset\left[r_{2}^{2}+2 r_{2},-r_{2}^{2}\right]
$$

where for case (A) and case (B) the spectral radius of $A_{1}^{-1} A^{\prime \prime}$ coincides with the appropriate interval end point, i.e., $\rho\left(A_{1}^{-1} A_{2}{ }^{\prime}\right)=\left|r_{i}{ }^{2}+2 r_{i}\right|, i=1,2$. (This defines the r_{i} to be selected.) Then in each case, we may define $\phi(z)=r_{i}$ for all $z \in \sigma\left(A_{1}^{-1} A_{2}{ }^{\prime}\right)$, resulting in a 3-part sequence $\left\{x_{n}\right\}$ of (1.3) whose average reduction factor $\sigma(m)$ of (3.3) is eventually bounded by $\mid r_{i}, i=1,2$. Moreover, the ratio of improvement $\left|r_{i}\right| / \rho\left(A_{1}^{-1} A^{\prime \prime}\right)$ of the bounds of (3.2) and (3.3) is always equal to $1 /\left(2+r_{i}\right)$. Equivalently, if the rates of convergence for $\left\{x_{m}\right\}$ and $\left\{x_{m}{ }^{\prime}\right\}$ are $R\left(x_{m}\right)=-\ln \left|r_{i}\right|$, and $-\ln \rho\left(A_{1}^{-1} A_{2}{ }^{\prime}\right)$: respectively, (note: $R\left(x_{m}\right)$ and $R\left(x_{m}{ }^{\prime}\right)$ are independent of m, then

$$
R\left(x_{m}\right)=R\left(x_{m}^{\prime}\right)+\ln \left(2+r_{i}\right)
$$

Proof. To satisfy (3.5)(i), we assign the value $\phi(z)=r$, where $|r|<1$. (We shall see presently, how r must relate to the scalar $\rho\left(A_{1}^{-\frac{1}{1}} A_{2}^{\prime}\right)$) To satisfy (3.5)(ii), or (3.6), all z for which $\phi(z)=r$, must satisfy the inequality

$$
\begin{equation*}
|z-r| \leqslant r+r^{2} \tag{3.7}
\end{equation*}
$$

But if $z \geqslant r,(3.7)$ implies

$$
\begin{equation*}
z \leqslant r^{2}+2 r \tag{3.8}
\end{equation*}
$$

and if $z \leqslant r$, (3.7) implies

$$
\begin{equation*}
z \geqslant-r^{2} \tag{3.9}
\end{equation*}
$$

Thus, those real z for which (3.6) obtains must lie in the interval bounded by $r^{2}+2 r$, and by $-r^{2}$. But $-r^{2}<r^{2}+2 r$ if and only if $r>0$, so that either
(A) $\sigma\left(A_{1}^{-1} A_{2}{ }^{\prime}\right) \subset\left[-r_{1}{ }^{2}, r_{1}{ }^{2}+2 r_{1}\right]$ if

$$
\phi: \sigma\left(A_{1}^{-1} A_{2}{ }^{\prime}\right) \rightarrow r_{1}>0
$$

or
(B) $\sigma\left(A_{1}^{-1} A_{2}{ }^{\prime}\right) \subset\left[r_{2}{ }^{2}+2 r_{2},-r_{2}{ }^{2}\right]$ if

$$
\phi: \sigma\left(A_{1}^{-1} A_{2}^{\prime}\right) \rightarrow r_{2}<0
$$

Since we have assumed that for case (A), $\rho\left(A_{1}^{-1} A_{2}{ }^{\prime}\right)=r_{1}{ }^{2}+2 r_{1}$, and for case (B), $\rho\left(A_{1}^{-1} A_{2}{ }^{\prime}\right)=-r_{2}{ }^{2}-2 r_{2}$, it is easy to check that in both cases, the ratio of improvement $\left|r_{i}\right| / \rho\left(A_{1}^{-1} A_{2}{ }^{\prime}\right)$ is equal to

$$
\frac{\left|r_{i}\right|}{\rho\left(A_{1}^{-1} A_{2}{ }^{\prime}\right)}=\frac{1}{2+r_{i}} \quad i=1,2 .
$$

Defining rates of convergence as the negative of the log of the "essential" upper bounds $\left|r_{i}\right|$ for $\sigma(m)$, and $\rho\left(A_{1}^{-1} A_{2}{ }^{\prime}\right)$ for $\sigma^{\prime}(m)$, i.e., $R\left(x_{m}\right)=-\ln \left|r_{i}\right|$ and $R\left(x_{m}{ }^{\prime}\right)=-\ln \rho\left(A_{1}^{-1} A_{2}{ }^{\prime}\right)$, leads us to the equation $R\left(x_{m}\right)=R\left(x_{m}{ }^{\prime}\right)+$ $\ln \left(2+r_{i}\right)$. This ends the proof.

Remark. The above theorem provides us with a specific algorithm for finding that constant r for which $\phi: \sigma\left(A_{1}^{-1} A_{2}{ }^{\prime}\right) \rightarrow r$, thus allowing construction of $A_{3}=(r / 1+r)\left(-r A_{1}+A_{2}{ }^{\prime}\right)$ as per (1.4) (take $\left.\phi\left(A_{1}{ }^{-1} A_{2}{ }^{\prime}\right)=r I\right)$. Moreover, if we know that the largest eigenvalue in $\sigma\left(A_{1}^{-1} A_{2}{ }^{\prime}\right)$ is near $r^{2}+2 r$, then this allows us to solve for r and to estimate that $\sigma(m)$ will be about $1 /(2+r)$ times $\sigma^{\prime}(m)$, at least for all m sufficiently large, i.e., $R\left(x_{m}\right)=$ $R\left(x_{m}{ }^{\prime}\right)+\ln (2+r)$.

Remark. Note that case (A) includes all $A_{1}^{-1} A_{2}{ }^{\prime}$ positive semidefinite, with $\rho\left(A_{1}^{-1} A_{2}{ }^{\prime}\right)=\lambda_{0}$, say. In this case we choose nonnegative $r=-1+\left(1+\lambda_{0}\right)^{1 / 2}$, where, in the construction of A_{3} (1.4) for the 3-part splitting (1.3), we take $\left(A \phi_{1}^{-1} A_{2}{ }^{\prime}\right)=r I$. This means that if for $k>0, \lambda_{0}^{k-1}>\frac{1}{2}$, the 3-part splitting will always increase the rate of convergence by a factor of at least k. This example indicates a general property of 3-part splittings, viz, the worse the situation is (meaning, the slower the convergence) for the 2-part splitting $A=A_{1}+A_{2}{ }^{\prime}$, the more effective is the passage to the 3-part splitting $A=A_{1}+A_{2}+A_{3}$, for increasing the rate of convergence.

4. Numerical Examples

We tabulate three examples for 6×6 matrices $C_{i}, i=1,2$, 3 , with real spectrum.

TABLE I

	C_{1}	C_{2}	C_{3}
a_{11}	8.85680975	8.85	8.99
a_{22}	-15.9136195	-15.9	-15.78
a_{13}	41.68404875	41.65	41.55
a_{14}	-263.9155023	-264.29698	-257.11
a_{15}	69.606678	69.798792	66.7
a_{16}	-34.727239	-34.799396	-33.77
a_{21}	0	0	0
a_{22}	2.9	2.9	3.1
a_{23}	-2.8	-2.8	-3.2
a_{24}	23.4478	23.4	27.24
a_{25}	-7.0239	-7.0	-8.32
a_{26}	2.8	2.8	3.2
a_{31}	2.0	2.0	2.0
a_{32}	2.0	2.0	2.0
a_{33}	5.0	5.0	5.0
a_{34}	-4.0	-3.50302	-7.65
a_{35}	-2.8	--2.998792	-1.42
a_{36}	-1.1	-1.000604	-1.79
a_{41}	2.0	2.0	2.0
a_{12}	-2.0	-2.0	-2.0
a_{45}	8.0	8.0	8.0
a_{44}	-42.75	-42.75	-42.85
a_{45}	10.0	10.0	10.0
a_{48}	-6.0	-6.0	-6.0
a_{51}	5.0	5.0	5.0
a_{52}	-6.0	-6.0	-6.0
a_{53}	22.0	22.0	22.0
$a_{5 \pm}$	-125.4522	-125.5	-125.06
a_{55}	31.4761	31.5	31.18
a_{56}	-17.0	-17.0	-17.0
a_{61}	-1.0	-1.0	-1.0
a_{62}	1.0	1.0	1.0
a_{63}	-1.0	-1.0	-1.0
a_{64}	4.3456	4.74698	2.18
a_{65}	1.1522	1.001208	1.94
a_{68}	1.9	1.999396	1.21

TABLE II^{a}

$$
\begin{gathered}
C_{1}=I_{6}+D_{1} \quad x_{0}=(8,4,-5,4,2,0) \\
\sigma\left(D_{1}\right)=\{-0.14319025,-0.1,0.0,0.25,0.4761,0.9\} \\
\rho\left(D_{1}\right)=0.9, \quad r=0.378404875, \quad \phi\left(D_{1}\right)=r I_{6}
\end{gathered}
$$

n	$\left\\|x_{n}\right\\| /\left\\|x_{0}\right\\|$	$\left\\|x_{n}{ }^{\prime}\right\\| /\left\\|x_{0}\right\\|$	$\sigma(n)$	$\sigma^{\prime}(n)$
1	1.000000	113.108062	1.000	113.1
2	113.108062	43.667486	10.635	6.608
3	46.579095	77.615677	3.598	4.265
4	62.763807	88.554503	2.814	3.067
5	40.049995	96.540981	2.091	2.494
10	1.414364	80.100428	1.035	1.550
15	0.018584	48.008148	0.766	1.294
20	0.000201	28.365837	0.653	1.182
25	0.000001	16.750171	0.587	1.119
26	$0 .-$	15.075162	0.580	1.109
35	$0 .-$	5.840430	0.520	1.051
100	$0 .-$	0.006197	0.425	0.950
129	$0 .-$	0.000291	0.414	0.938

${ }^{a} R\left(x_{n}\right) / R\left(x_{n}{ }^{\prime}\right)=\ln (r) / \ln \rho\left(D_{1}\right)=9.22 ; \sigma(129) / \sigma^{\prime}(129)=2.27$.

TABLE III ${ }^{*}$

$$
\begin{gathered}
C_{2}=I_{6}+D_{2} \quad x_{0}=(8,4,-5,4,2,0) \\
\sigma\left(D_{2}\right)=\{-0.15,-0.1,0.0,0.25,0.5,0.999396\} \\
\rho\left(D_{2}\right)=0.999396, \quad r=0.414, \quad \phi\left(D_{2}\right)=r I_{6}
\end{gathered}
$$

n	$\left\\|x_{n}\right\\| /\left\\|x_{0}\right\\|$	$\left\\|x_{n}{ }^{\prime}\right\\| /\left\\|x_{0}\right\\|$	$\sigma(n)$	$\sigma^{\prime}(n)$
1	1.000000	113.189	1.000	113.2
2	113.189885	43.443	10.639	6.591
3	45.421612	77.061	3.567	4.255
4	63.573975	88.846	2.823	3.070
5	40.307379	102.826	2.094	2.525
10	1.842889	136.218	1.063	1.634
15	0.032304	137.141	0.795	1.388
20	0.000463	136.770	0.681	1.279
25	0.000005	136.358	0.615	1.217
26	0.000002	136.276	0.607	1.208
27	0.000000	136.194	0.597	1.199
50	$0 .-$	134.314	0.506	1.102
90	$0 .-$	131.107	0.466	1.056
135	$0 .-$	127.591	0.449	1.037

${ }^{a} R\left(x_{n}\right) / R\left(x_{n}{ }^{\prime}\right)=\ln (r) / \ln \left(\rho\left(D_{2}\right)\right)=1,461 ; \sigma(135) / \sigma^{\prime}(135)=2.31$.

TABLE IV ${ }^{a}$

$$
\begin{gathered}
C_{3}=I_{6}+D_{3} \quad x_{0}=(8,4,-5,4,2,0) \\
\sigma\left(D_{3}\right)=\{-0.1,0.0,0.1,0.15,0.18,0.21\} \\
\rho\left(D_{3}\right)=0.21, \quad r=0.1, \quad \phi\left(D_{3}\right)=r I_{6}
\end{gathered}
$$

n		$\left\\|x_{n}\right\\|\left\\|x_{0}\right\\|$	$\left\\|x_{n}{ }^{\prime}\right\\| /\left\\|x_{0}\right\\|$	$\sigma(n)$
1	1.000000	111.326583	$\sigma^{\prime}(n)$	
2	111.326683	44.873922	1.000	111.326
3	47.834845	81.996116	3.630	6.699
4	72.558852	96.555184	2.919	4.344
5	65.427057	70.959400	2.308	3.135
6	30.756910	34.021879	1.770	2.345
7	4.461669	12.456920	1.238	1.800
8	0.928876	3.888346	0.990	1.434
9	0.111368	1.096571	0.783	1.185
10	0.017483	0.288688	0.667	1.010
14	0.000003	0.000949	0.409	0.883
15	0.000000	0.000215	0.373	0.608
18	$0 .-$	0.000002	0.306	0.569
19	$0 .-$	0.000000	0.289	0.486

${ }^{a} R\left(x_{n}\right) / R\left(x_{n}\right)=\ln (r) / \ln \left(\rho\left(D_{3}\right)\right)=1.48 ; \sigma(19) / \sigma^{\prime}(19)=1.61$.
The 2-part splittings all take $A_{1}=I_{6}$, the identity matrix. That is

$$
C_{i}=I_{6}+D_{i}
$$

(so that $A_{1}^{-1} A_{2}{ }^{\prime}=D_{i}$) defines the two part sequence $\left\{x_{m}{ }^{\prime}\right\}$ as per (1.2) and the 3-part splitting

$$
C_{i}=I_{6}+\left(\frac{1-r}{1+r} D_{i}+\frac{r^{2}}{1+r} I_{6}\right)+\left(\frac{r}{1+r} D_{i}-\frac{r^{2}}{1+r} I_{6}\right)
$$

defines the 3-part sequence $\left\{x_{m}\right\}$ as per (1.3), with A_{3} defined by $\phi\left(D_{i}\right)=r$ in (1.4). The C_{i} 's are selected so that $\sigma\left(C_{i}\right)$ is real, and Theorem 3.3 will apply. In our examples r will be taken as the positive root of $r^{2}+2 r-\left(\lambda_{i}-1\right)$, where $\lambda_{i}\left(\operatorname{resp} . \lambda_{i}-1\right)$ is the largest eigenvalue of $C_{i}\left(\right.$ resp. of $\left.D_{i}=C_{i}-I_{6}\right)$. Finally, we test the systems $C_{i} x=0$ for convergence of the sequences $\left\{x_{m}{ }^{\prime}\right\}$ and $\left\{x_{m}\right\}$ to the solution vector 0 , with $x_{0}=\operatorname{col}(8,4,-5,4,2,0)$.

The entries $a_{j k}$ for each C_{i} are tabulated in Table I.
In C_{2}, we perturb the eigenvalues to bring $\rho\left(D_{2}\right)$ even closer to the unit circle. Convergence for the 2 -part splitting $C_{2}=I_{6}+D_{2}$ is very much slower than that for C_{1} above, but the 3 -part splitting converges for C_{2},
about as fast as it does for C_{1}, reaching 6-place accuracy, for example, in 27 iterations.

We have seen two cases, C_{1}, C_{2}, where a 3-part splitting works best, i.e., when $\rho\left(D_{i}\right)$ is close to unity and the 2 -part sequence $\left\{x_{n}{ }^{\prime}\right\}$ converges slowly. In the next case, $\rho\left(D_{3}\right)$ is reasonably small $\left(\rho\left(D_{3}\right)=0.21\right)$ and while the improvement by a 3-part splitting on C_{3} is not as dramatically better, a faster convergence does result.

References

1. J. de Pillus, k-part splittings and operator parameter overrelaxation, J. Math. Anal. Appl. 53 (1976), 313-342.
2. R. S. Varga, "Matrix Iterative Analysis," Prentice Hall, Englewood Cliffs, New Jersey, 1962.
